PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Authors
Xinyi Wan, Penghui Qi, Guangxing Huang, Jialin Li, Min Lin
Published on
March 03, 2025
Publisher
Preprint
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19% acceleration with even lower memory consumption. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble