Inception Transformer

Chenyang Si, Weihao Yu, Pan Zhou, Yichen Zhou, Xinchao Wang, Shuicheng Yan
December 17, 2022
NeurIPS 2022
Recent studies show that Transformer has strong capability of building long-range dependencies, yet is incompetent in capturing high frequencies that predominantly convey local information. To tackle this issue, we present a novel and general-purpose Inception Transformer, or iFormer for short, that effectively learns comprehensive features with both high- and low-frequency information in visual data. Specifically, we design an Inception mixer to explicitly graft the advantages of convolution and max-pooling for capturing the high-frequency information to Transformers. Different from recent hybrid frameworks, the Inception mixer brings greater efficiency through a channel splitting mechanism to adopt parallel convolution/max-pooling path and self-attention path as high- and low-frequency mixers, while having the flexibility to model discriminative information scattered within a wide frequency range. Considering that bottom layers play more roles in capturing high-frequency details while top layers more in modeling low-frequency global information, we further introduce a frequency ramp structure, i.e. gradually decreasing the dimensions fed to the high-frequency mixer and increasing those to the low-frequency mixer, which can effectively trade-off high- and low-frequency components across different layers. We benchmark the iFormer on a series of vision tasks, and showcase that it achieves impressive performance on image classification, COCO detection and ADE20K segmentation. For example, our iFormer-S hits the top-1 accuracy of 83.4% on ImageNet-1K, much higher than DeiT-S by 3.6%, and even slightly better than much bigger model Swin-B (83.3%) with only 1/4 parameters and 1/3 FLOPs.

Other Publications

D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory
Tianbo Li, Min Lin, Zheyuan Hu, Kunhao Zheng, Giovannie Vignale, Kenji Kawaguchi, A.H. Castro Neto, Kotsya S. Novoselov, Shuicheng Yan
2023
ICLR 2023
Kohn-Sham Density Functional Theory (KS-DFT) has been traditionally solved by the Self-Consistent Field (SCF) method. Behind the SCF loop is the physics intuition of solving a system of non-interactive single-electron wave functions under an effective potential. In this work, we propose a deep-learning approach to KS-DFT. First, in contrast to the conventional SCF loop, we propose directly minimizing the total energy by reparameterizing the orthogonal constraint as a feed-forward computation. We prove that such an approach has the same expressivity as the SCF method yet reduces the computational complexity from O(N4) to O(N3). Second, the numerical integration, which involves a summation over the quadrature grids, can be amortized to the optimization steps. At each step, stochastic gradient descent (SGD) is performed with a sampled minibatch of the grids. Extensive experiments are carried out to demonstrate the advantage of our approach in terms of efficiency and stability. In addition, we show that our approach enables us to explore more complex neural-based wave functions.
On Grounded Planning for Embodied Tasks with Language Models
Bill Yuchen Lin, Chengsong Huang, Qian Liu, Wenda Gu, Sam Sommerer, Xiang Ren
2022
arXiv
Language models (LMs) are shown to have commonsense knowledge of the physical world, which is fundamental for completing tasks in everyday situations. However, it is still an open question whether LMs have the ability to generate grounded, executable plans for embodied tasks. It is very challenging because LMs do not have an "eye" or "hand" to perceive the realistic environment. In this work, we show the first study on this important research question. We first present a novel problem formulation named G-PlanET, which takes as input a high-level goal and a table of objects in a specific environment. The expected output is a plan consisting of step-by-step instructions for agents to execute. To enable the study of this problem, we establish an evaluation protocol and devise a dedicated metric for assessing the quality of plans. In our extensive experiments, we show that adding flattened tables for encoding environments and using an iterative decoding strategy can both improve the LMs' ability for grounded planning. Our analysis of the results also leads to interesting non-trivial findings.